Торіс		Ref	Ex	
Binomial expansion	 Expanding (1 + x)ⁿ Expand (1 + x)ⁿ for any rational constant n Determine the range of values for which it is valid 	P4.1	P4A	
	 Expanding (a + bx)ⁿ Expand (a + bx)ⁿ for any rational constant n Determine the range of values for which it is valid 	P4.1	P4B	
	 Using Partial Fractions Use and apply models that involve quadratic functions 	P4.1	P4C	
Trigonometric Functions	 Secant, cosecant and cotangent Understand the definition of secant, cosecant and cotangent and their relationship to cosine, sine and tangent. Understand the graphs of sec, cosec and cot and their domain and ranges. 	P5.4	P6A P6B	
	 Using sec, cosec and cot Simplify expressions involving sec, cosec and cot. Prove identities involving sec, cosec and cot. Solve equations involving sec, cosec and cot. 	P5.4 P5.8	P6C	
	Trigonometric Identities • Prove and use $\sec^2 x \equiv 1 + \tan^2 x$ and $\csc^2 x \equiv 1 + \cot^2 x$.	P5.5	P6D	
	 Inverse Trigonometric Functions Understand and use inverse trig functions arcsin, arccos and arctan and their domain and ranges. Be able to sketch their graphs. 	P5.4	P6E	
Parametric Equations	 Parametric Equations Convert parametric equations into Cartesian form by substitution. Convert parametric equations into Cartesian form using trigonometric identities. 	P3.3	P8A P8B	
	Curve SketchingBe able to sketch curves defined parametrically.	P3.3	P8C	
	 Coordinate Geometry Solve coordinate geometry problems involving parametric equations. 	P3.3	P8D	
	ModellingUse parametric equations to model real life situations.	P3.4	P8E	
Assessment 1				

Topic		Ref	Ex	
Further Trigonometry	 Addition Formulae Prove and use the addition formulae for sin(A + B), cos(A + B) and tan(A + B). Use the addition formulae to find exact values of trigonometric functions of different angles. 	P5.6	P7A P7B	
	 Double angle Formulae Understand and use the double angle formula sin2A, cos2A and tan2A. 	P5.6	P7C	
	 Solving Trigonometric Equations Use the addition and double angle formulae to help solve trigonometric equations 	P5.6	P7D	
	 (R, α) method Write expressions of the form acosα ± bsinα in the forms Rcos (Θ ± α) or Rsin (Θ ± α). Use this form to solve equations and find maximum and minimum values of such functions. 	P5.6	P7E	
	 Proving Trigonometric Identities Use known trigonometric identities to prove other trigonometric identities. 	P5.8	P7F	
	 Modelling with Trigonometric Functions Use trigonometric functions to model real-life situations, 	P5.9	P7G	
Sequences and Series	 Arithmetic Sequences Find the nth term of an arithmetic sequence. Understand the difference between a sequence and a series. Prove and use the formula for the sum of the first n terms of an arithmetic series. 	P4.4	P3A P3B	
	 Geometric Sequences Find the nth term of a geometric sequence. Prove and use the formula for the sum of a finite geometric series. Prove and use the formula for the sum to infinity of a convergent geometric series. 	P4.5	P3C P3D P3E	
	 Sigma notation Use and understand sigma ∑ notation to describe series 	P4.3	P3F	
	 Recurrence Relations Generate sequences from recurrence relations of the form u_{n+1} = F(u_n). Be able to recognise increasing, decreasing and periodic sequences written as a recurrence relation. 	P4.2	P3G P3H	
	 Modelling with Series Model real-life situations with sequences and series. 	P4.6	P3I	
Assessment 2				

Торіс		Ref	Ex	
Functions	 The modulus function Understand and use the modulus function y = f(x) . Sketch graphs of modulus functions of the form y= f(x) or y=f(x). Use graphs to solve equations and inequalities involving the modulus function. 	P2.7	P2A P2E	
	 Function definition Understand mappings and functions Use domain and range to define a function. 	P2.8	P2B	
	 Composite Functions Combine two or more functions to make a composite function. Find the domain and range for composite functions. 	P2.8	P2C	
	 Inverse Functions Know how to find the inverse of a function both algebraically and graphically. State the domain and range for an inverse function. 	P2.8	P2D	
	 Combining Transformations Apply a combination of two (or more) transformations to the same curve. Transform the modulus function . 	P2.9	P2F P2G	
Numerical Methods	 Locating Roots Locate roots of f(x) = 0 by considering change of sign. Understand how change of sign methods can fail. 	P9.1	P10A	
	 Iteration Use iteration to find an approximation to the root of the equation f(x) = 0. Rearrange an equation into an iterative formula. Understand convergence in geometrical terms by drawing cobweb and staircase diagrams. 	P9.2	P10B	
	 Newton-Raphson Use the Newton-Raphson method to find an approximation to the root of the equation f(x) = 0. Understand geometrically what the method is doing and how this method can fail. 	P9.3	P10C	
	 Applications to modelling Use numerical methods to solve problems in context 	P9.5	P10D	
Regression and Correlation	 Exponential Models Understand exponential models in bivariate data. Use a change of variable to estimate coefficients in an exponential model y = axⁿ or y = kb^x. 	A2.2	A1A	
	 Product Moment Correlation Coefficient Understand and calculate the PMCC. 	A2.2 A5.1	A1B	
	 Hypothesis Test Carry out a hypothesis test for zero correlation. 	A5.1	A1C	
Assessment 3				

Торіс		Ref	Ex
Conditional Probability	Set NotationUnderstand set notation in probability.	A3.1	A2A
	 Conditional Probability Understand what is meant by conditional probability. Solve conditional probability problems using two way tables and Venn diagrams. 	A3.2	A2B A2C
	 Probability formulae Understand and use the conditional probability formulae to solve problems. 	A3.2	A2D
	Tree diagramsSolve conditional probability using tree diagrams.	A3.2	A2E
Normal Distribution	 Definition Understand the normal distribution and the characteristics of a normal distribution curve. 	A4.2	A3A
	 Finding probabilities for given normal distributions Find probabilities for a normal distribution using the normal cumulative distribution function on a calculator. 	A4.2	A3B
	 The Inverse Normal Distribution Function Calculate a value for a given probability for a normal distribution using the inverse normal distribution function on a calculator. i.e. find b such that P(X<b)=p.< li=""> </b)=p.<>	A4.2	A3C
	 The Standard Normal Distribution Know that the standard normal distribution has mean 0 and standard deviation 1. Standardise normally distributed random variables by coding the data to model the standard normal distribution. 	A4.2	A3D
	 Finding the mean or standard deviation Find unknown means and/or standard deviations for a normal distribution 	A4.2	A3E
	 Approximating a binomial distribution Approximate a binomial distribution using a normal distribution 	A4.2	A3F
	 Hypothesis Testing Carry out a hypothesis test for the mean of a normal distribution. 	A4.2 A4.3	A3G
	Assessment 4		