Year 13 Maths - Pure and Statistics Teacher

Topic		Ref	Ex
Binomial expansion	Expanding (1+x) ${ }^{n}$ - Expand $(1+x)^{n}$ for any rational constant n - Determine the range of values for which it is valid	P4.1	P4A
	Expanding $(\mathbf{a}+\mathrm{bx})^{\mathrm{n}}$ - Expand $(a+b x)^{n}$ for any rational constant n - Determine the range of values for which it is valid	P4.1	P4B
	Using Partial Fractions - Use and apply models that involve quadratic functions	P4.1	P4C
Trigonometric Functions	Secant, cosecant and cotangent - Understand the definition of secant, cosecant and cotangent and their relationship to cosine, sine and tangent. - Understand the graphs of sec, cosec and cot and their domain and ranges.	P5.4	$\begin{aligned} & \hline \text { P6A } \\ & \text { P6B } \end{aligned}$
	Using sec, cosec and cot - Simplify expressions involving sec, cosec and cot. - Prove identities involving sec, cosec and cot. - Solve equations involving sec, cosec and cot.	$\begin{aligned} & \hline \text { P5.4 } \\ & \text { P5.8 } \end{aligned}$	P6C
	Trigonometric Identities - Prove and use $\sec ^{2} x \equiv 1+\tan ^{2} x$ and $\operatorname{cosec}^{2} x \equiv 1+$ $\cot ^{2} x$.	P5.5	P6D
	Inverse Trigonometric Functions - Understand and use inverse trig functions arcsin, arccos and arctan and their domain and ranges. - Be able to sketch their graphs.	P5.4	P6E
Parametric Equations	Parametric Equations - Convert parametric equations into Cartesian form by substitution. - Convert parametric equations into Cartesian form using trigonometric identities.	P3.3	$\begin{aligned} & \text { P8A } \\ & \text { P8B } \end{aligned}$
	Curve Sketching - Be able to sketch curves defined parametrically.	P3.3	P8C
	Coordinate Geometry - Solve coordinate geometry problems involving parametric equations.	P3.3	P8D
	Modelling - Use parametric equations to model real life situations.	P3.4	P8E
Assessment 1			

Year 13 Maths - Pure and Statistics Teacher

Topic		Ref	Ex
Further Trigonometry	Addition Formulae - Prove and use the addition formulae for $\sin (\mathrm{A}+\mathrm{B})$, $\cos (A+B)$ and $\tan (A+B)$. - Use the addition formulae to find exact values of trigonometric functions of different angles.	P5.6	$\begin{aligned} & \hline \text { P7A } \\ & \text { P7B } \end{aligned}$
	Double angle Formulae - Understand and use the double angle formula sin2A, $\cos 2 \mathrm{~A}$ and tan2A.	P5.6	P7C
	Solving Trigonometric Equations - Use the addition and double angle formulae to help solve trigonometric equations	P5.6	P7D
	(R, α) method - Write expressions of the form acos $\alpha \pm b s i n \alpha$ in the forms $R \cos (\Theta \pm \alpha)$ or $R \sin (\Theta \pm \alpha)$. - Use this form to solve equations and find maximum and minimum values of such functions.	P5.6	P7E
	Proving Trigonometric Identities - Use known trigonometric identities to prove other trigonometric identities.	P5.8	P7F
	Modelling with Trigonometric Functions - Use trigonometric functions to model real-life situations,	P5.9	P7G
Sequences and Series	Arithmetic Sequences - Find the nth term of an arithmetic sequence. - Understand the difference between a sequence and a series. - Prove and use the formula for the sum of the first n terms of an arithmetic series.	P4.4	$\begin{aligned} & \text { P3A } \\ & \text { P3B } \end{aligned}$
	Geometric Sequences - Find the nth term of a geometric sequence. - Prove and use the formula for the sum of a finite geometric series. - Prove and use the formula for the sum to infinity of a convergent geometric series.	P4.5	$\begin{aligned} & \text { P3C } \\ & \text { P3D } \\ & \text { P3E } \end{aligned}$
	Sigma notation - Use and understand sigma \sum notation to describe series	P4.3	P3F
	Recurrence Relations - Generate sequences from recurrence relations of the form $u_{n+1}=F\left(u_{n}\right)$. - Be able to recognise increasing, decreasing and periodic sequences written as a recurrence relation.	P4.2	$\begin{aligned} & \text { P3G } \\ & \text { P3H } \end{aligned}$
	Modelling with Series - Model real-life situations with sequences and series.	P4.6	P3I
Assessment 2			

Year 13 Maths - Pure and Statistics Teacher

Topic		Ref	Ex	
Functions	The modulus function \|	 - Understand and use the modulus function $y=\|f(x)\|$. - Sketch graphs of modulus functions of the form $y=\|f(x)\|$ or $y=f(\|x\|)$. - Use graphs to solve equations and inequalities involving the modulus function.	P2.7	$\begin{aligned} & \text { P2A } \\ & \text { P2E } \end{aligned}$
	Function definition - Understand mappings and functions - Use domain and range to define a function.	P2.8	P2B	
	Composite Functions - Combine two or more functions to make a composite function. - Find the domain and range for composite functions.	P2.8	P2C	
	Inverse Functions - Know how to find the inverse of a function both algebraically and graphically. - State the domain and range for an inverse function.	P2.8	P2D	
	Combining Transformations - Apply a combination of two (or more) transformations to the same curve. - Transform the modulus function \|	.	P2.9	$\begin{aligned} & \hline \text { P2F } \\ & \text { P2G } \end{aligned}$
Numerical Methods	Locating Roots - Locate roots of $f(x)=0$ by considering change of sign. - Understand how change of sign methods can fail.	P9. 1	P10A	
	Iteration - Use iteration to find an approximation to the root of the equation $f(x)=0$. - Rearrange an equation into an iterative formula. - Understand convergence in geometrical terms by drawing cobweb and staircase diagrams.	P9.2	P10B	
	Newton-Raphson - Use the Newton-Raphson method to find an approximation to the root of the equation $f(x)=0$. - Understand geometrically what the method is doing and how this method can fail.	P9.3	P10C	
	Applications to modelling - Use numerical methods to solve problems in context..	P9.5	P10D	
Regression and Correlation	Exponential Models - Understand exponential models in bivariate data. - Use a change of variable to estimate coefficients in an exponential model $y=a x^{n}$ or $y=k b^{\mathrm{x}}$.	A2.2	A1A	
	Product Moment Correlation Coefficient - Understand and calculate the PMCC.	$\begin{aligned} & \text { A2.2 } \\ & \text { A5.1 } \end{aligned}$	A1B	
	Hypothesis Test - Carry out a hypothesis test for zero correlation.	A5. 1	A1C	
Assessment 3				

Year 13 Maths - Pure and Statistics Teacher

Topic		Ref	Ex
Conditional Probability	Set Notation - Understand set notation in probability.	A3. 1	A2A
	Conditional Probability - Understand what is meant by conditional probability. - Solve conditional probability problems using two way tables and Venn diagrams.	A3. 2	$\begin{aligned} & \text { A2B } \\ & \text { A2C } \end{aligned}$
	Probability formulae - Understand and use the conditional probability formulae to solve problems.	A3.2	A2D
	Tree diagrams - Solve conditional probability using tree diagrams.	A3.2	A2E
Normal Distribution	Definition - Understand the normal distribution and the characteristics of a normal distribution curve.	A4.2	A3A
	Finding probabilities for given normal distributions - Find probabilities for a normal distribution using the normal cumulative distribution function on a calculator.	A4.2	A3B
	The Inverse Normal Distribution Function - Calculate a value for a given probability for a normal distribution using the inverse normal distribution function on a calculator. i.e. find b such that $P(X<b)=p$.	A4.2	A3C
	The Standard Normal Distribution - Know that the standard normal distribution has mean 0 and standard deviation 1. - Standardise normally distributed random variables by coding the data to model the standard normal distribution.	A4.2	A3D
	Finding the mean or standard deviation - Find unknown means and/or standard deviations for a normal distribution	A4.2	A3E
	Approximating a binomial distribution - Approximate a binomial distribution using a normal distribution	A4.2	A3F
	Hypothesis Testing - Carry out a hypothesis test for the mean of a normal distribution.	$\begin{aligned} & \text { A4.2 } \\ & \text { A4.3 } \end{aligned}$	A3G
Assessment 4			

